This article was downloaded by: [University of Haifa Library]

On: 22 August 2012, At: 10:17 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Vibrational and Electronic Properties of Perylenediimide Linked to Fullerene and Tetrathiafulvalene

Andrzej Łapiński ^a , Andrzej Graja ^a , Iwona Olejniczak ^a , Andrzej Bogucki ^a , Maria Połomska ^a , Jérôme Baffreau ^b , Lara Perrin ^b , Stéphanie Leroy-Lhez ^b & Piétrick Hudhomme ^b

^a Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

^b Laboratoire de Chimie, Ingénierie Moléculaire et Matériaux d'Angers, UMR CNRS, Université d'Angers, Angers, France

Version of record first published: 23 Aug 2006

To cite this article: Andrzej Łapiński, Andrzej Graja, Iwona Olejniczak, Andrzej Bogucki, Maria Połomska, Jérôme Baffreau, Lara Perrin, Stéphanie Leroy-Lhez & Piétrick Hudhomme (2006): Vibrational and Electronic Properties of Perylenediimide Linked to Fullerene and Tetrathiafulvalene, Molecular Crystals and Liquid Crystals, 447:1, 87/[405]-103/[421]

To link to this article: http://dx.doi.org/10.1080/15421400500385381

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 447, pp. 87/[405]-103/[421], 2006

Copyright © Taylor & Francis Group, LLC ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421400500385381

Vibrational and Electronic Properties of Perylenediimide Linked to Fullerene and Tetrathiafulvalene

Andrzej Łapiński Andrzej Graja Iwona Olejniczak Andrzej Bogucki Maria Polomska

Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

Jérôme Baffreau Lara Perrin Stéphanie Leroy-Lhez Piétrick Hudhomme

Laboratoire de Chimie, Ingénierie Moléculaire et Matériaux d'Angers, UMR CNRS, Université d'Angers, Angers, France

Solid-state electronic (UV-Vis) and vibrational (IR) spectra of the tetrathia fulvaleneperylenediimide (PDI-TTF) 1 and perylenediimide-fullerene (PDI-C₆₀) 2 dyads as well as PDI 3, TTF 8 and fullerene 9 derivatives used as references molecules were investigated in the frequency range between 400 and 45,500 cm⁻¹. Electronic and vibrational features of the dyads were compared and analysed. Molecular geometry of the compounds and their IR and Raman theoretical spectra were calculated. It was stated, that small redistribution of the charges occurs in both moieties of these dyads. This effect is observed as shifts of both electronic and vibrational bands of the dyads in comparison with the respective bands of free components.

Keywords: electronic spectra; normal modes analysis; perylenediimide-fullerene dyad; perylenediimide-tetrathiafulvalene dyad; vibrational spectra

This research was undertaken as part of the European collaborative COST Program (Action D14/0004/99). We thank BASF-AG, Ludwigshafen, for providing starting material 1,6,7,12-tetrachloroperylenetetracarboxylic dianhydride.

Address correspondence to Andrzej Graja, Institute of Molecular Physics, Polish Academy of Sciences, PL 60-179 Poznań, Poland.

INTRODUCTION

Historically applied for industrial purposes as pigments due to their insolubility and photostability [1], perylene-3,4,9,10-tetracarboxydiimides (PDI) belong now to the most fascinating functional molecular materials [2]. These are potentially interesting electron-accepting materials and the best n-type molecular semi-conductors available to date, providing promising compounds for application in electronic devices. New developments in the field of PDI-based functional materials are now devoted towards the synthesis of donor – PDI molecular assemblies with the aim of promoting an efficient photoinduced electron transfer reaction between these two redox active units and long-lived charge-separated states. Several approaches for designing and creating donor- σ -acceptor (D- σ -A) dyads have been recently proposed for applications in molecular electronics as switches, wires or rectifiers, in the development of artificial photosynthetic systems or efficient photovoltaic devices [3]. Thus PDI derivatives have been associated to different donors such as zinc porphyrin [4], pyrene [5], ferrocene [6] or oligo(p-phenylenevinylene) [7]. PDI was very recently linked to fullerene C₆₀ with the aim of inducing an intramolecular energy transfer and to play the role of light-harvesting antenna for enhancing the efficiency of organic solar cells [8-10]. To our knowledge, this acceptor has never been associated in a dyad system with tetrathiafulvalene (TTF) as the donor counterpart.

We have been interested in the development of a dissymmetrical perylene-3,4,9,10-tetracarboxydiimide building block in order to investigate its grafting to both tetrathiafulvalene and C_{60} to obtain PDI-TTF and PDI- C_{60} dyads 1 and 2, respectively. The main aim of this work is to provide information on electronic and vibrational properties of these two PDI dyads with an electron donor molecule (TTF-based 8) and an electron acceptor molecule (modified C_{60} 9). The molecular geometry and dynamics of these adducts are simulated and theoretical IR and Raman spectra are compared with the experimental data. Our overall goal is to study the correlation between the structure of new chromophoric systems and their electron and vibrational features, deduced from spectral response in a broad frequency range.

EXPERIMENTAL

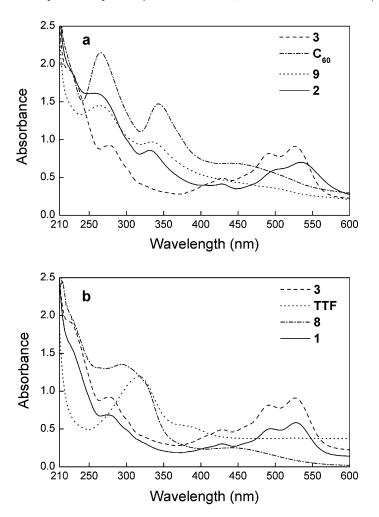
Compounds chosen for spectral investigations, i.e., PDI-TTF 1 and PDI- C_{60} 2 dyads as well as reference molecules (PDI 3, modified TTF 8 and modified C_{60} 9) are shown in Scheme 1.

SCHEME 1 Synthesis and chemical structure of the investigated samples: the dyad **1** (PDI-TTF), the dyad **2** (PDI- C_{60}), as well as the reference molecules of the PDI **3**, the modified TTF **8**, and the modified C_{60} **9**.

The readily-available dissymmetrical PDI 5 tetrasubstituted at the bay region by chlorine atoms was obtained by direct condensation of 1-pentylamine and 2-aminoethanol in stoichiometric ratio on 1,6,7,12-tetrachloroperylene tetracarboxylic dianhydride in refluxing toluene. After separation from both symmetrical PDI derivatives 3 and 4, dissymmetrical monoalcohol 5 was isolated in 28% yield. PDI-TTF dyad 1 was then synthesized in a one-pot esterification reaction, which was cleanly carried out by using TTF monoacid 7 [11] and PDI monoalcohol 5 in the presence of DCC as an activating reagent and both DMAP and HOBT to afford dyad 1 [12] in 94% yield. Using the same peptide coupling conditions for the reaction between TTF monoacid 7 and ethanol, TTF 8 was synthesized as the reference for further studies.

Methanofullerene dyad **2** was obtained using a two-step strategy by successive transformation to the corresponding malonate using ethyl

malonyl chloride and further cyclopropanation with iodine and DBU [13]. Purification by silica gel column chromatography (CH₂Cl₂/EtOAc 4/1 as the eluents) afforded dyad 2 [14] in 41% yield. Reference compound 9 was efficiently prepared according to the Bingel's methodology starting from α -bromoethyl malonate [15].


Electronic absorption spectra in the range between 220 and 2500 nm were recorded with a Perkin Elmer UV-Vis-NIR Lambda 19 spectrometer, at room temperature. The spectra of powdered samples (1-3, 8, 9) were taken in KBr pellets containing dispersed compounds with weight concentrations 1:1000-1:8000, depending on the band intensities. Vibrational spectra in the range 400-7000 cm⁻¹ were also recorded with a FT-IR Bruker Equinox 55 spectrometer, in KBr pellets with a typical concentration 1:1000, at room temperature. Raman scattering of the light was investigated with a Bruker IFS 66 FRA 106 spectrometer (the exciting wavelength is $\lambda = 1.064 \,\mu\text{m}$). We focused our attention on two spectral regions: the first between 220 and 600 nm (45500-17000 cm⁻¹), where the electronic excitations of the dyads are observed, and the second between 400 and 1800 cm⁻¹, where the intramolecular vibrations occur. Between these two regions, only weak absorption bands typical for C-H group vibrations are observed.

With the help of the Gaussian 03 program [16], we performed normal mode analysis for 1, 3, 8, and 9. The equilibrium geometry and vibrational modes of these neutral molecules were evaluated with a Becke-style 3-Parameter Density Functional Theory with the Lee-Yang-Parr correlation functional (B3LYP) using a basis set of 3-21G (1 and 9), 6-31G (3) or 6-311++G(d,p) (8). Moreover, the assignment of normal modes was proposed using the program GaussView.

RESULTS AND DISCUSSION

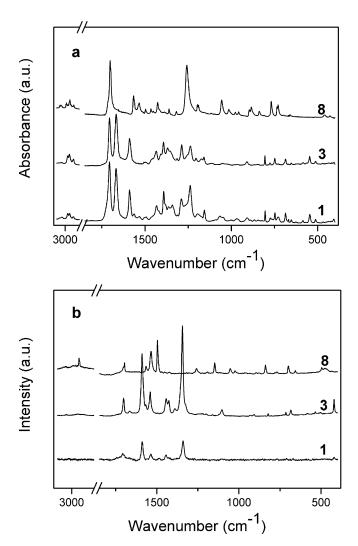
Electronic Spectra

The UV-Vis absorption spectra of investigated compounds **1–3**, **8**, **9** are shown in Figures 1a and b. In the modified fullerene **9**, two strong and overlapping optical absorption bands at 267 and 334 nm are observed (Fig. 1a). They correspond to the bands identified as the dipole-allowed transitions observed in prisstine C_{60} at 266 and 343 nm, respectively [17]. The band at 334 nm undergoes a hypochromic shift by 9 nm compared to the wavelength of the respective band of C_{60} but the other band is practically not shifted; both of the bands are broadened. The band centered at 334 nm is slightly more blue-shifted and broadened in the dyad **2**. Similar, but stronger shifts were

FIGURE 1 Electronic absorption spectra of: (a) the dyad **2** (PDI- C_{60}), PDI **3**, the modified C_{60} **9**, and fullerene C_{60} (shown for comparison); (b) the dyad **1** (PDI-TTF), PDI **3**, the modified TTF **8**, and the tetrathiafulvalene TTF (shown for comparison).

observed in other fullerene adducts, e.g., in the *bis*-linked TTF-fullerene derivatives [18–20], *meso,meso*-linked oligoporphyrin bearing one or two fullerene moieties [21] and the fullerene-zinc porphyrin dyad [22]. Weaker electron donor properties of the perylenediimide 3 with the ionization potential slightly above $I=+1.95\,\mathrm{V}$, in comparison with TTF 8 ($I=+0.63\,\mathrm{V}$) cause a smaller bonding energy

of the dyad 2, and as a consequence – relatively small fullerene band shift.


The electronic absorption spectrum of the PDI 3 in KBr pellet (Fig. 1a) is dominated by typical perylene triple absorption with local maxima at 527, 493, and 458 nm; there are also weak bands at 429, 277, and 224 nm. The triple absorption characteristic for the highest occupied energy levels of perylene (dissolved in cyclohexane) shows maxima at 435, 408, and 387 nm but another bands are centered at 371, 252, and 245 nm [23]. The adequate triple absorption of all known PDIs in organic solvents is observed at about 526, 490, and 458 nm [24]. The weak dependence of the spectra on the terminal group in various PDIs is clear because the chromophore has nodes in the orbitals HOMO and LUMO at the nitrogen atoms [25]. Thus, according to our measurements in the solid state, 3 shows the typical electronic absorption for perylenediimides in organic solvents. Some of the bands of **3** can be identified in its dyad **2** with C_{60} . Doubtless, the bands at 535, 499, and 428 nm can be attributed to typical perylenediimide absorptions. Two former bands show bathochromic shift by a few nanometres (on an average 7 nm) with regard to components of the triple absorption of 3. In opposite, the band at 428 nm is practically not shifted.

On the other hand, our earlier investigations on both porphyrinand TTF-containing fullerene-derived adducts [18–22] showed, that the spectra of compounds derived from C_{60} , have some common features, virtually not dependent on the attached molecular groups. In spite of the covalent linkage and vicinity of both fullerene and TTF or porphyrin π -electron systems, the observed spectral effects can be mainly ascribed to through-bond interaction between the two moieties [20].

The electronic spectrum of TTF (Fig. 1b) contains a strong absorption band at 318 nm and much weaker absorption at about 380 nm. The spectrum of modified TTF molecule $\bf 8$ is completely different: a broad, unsymmetrical absorption is observed between 280 and 345 nm and much weaker band is centered at 445 nm. This shows that modification of the TTF molecule changes distinctly its electronic structure. The spectrum of the dyad $\bf 1$ consists of the bands at 528, 494, 429, about 275 and about 225 nm and it reproduces well the respective spectrum of $\bf 3$. It means that TTF does not change distinctly the electronic structure of the chromophore $\bf 3$. A similar effect was observed in the fullerene-tetrathiafulvalene cyclohexene fused polyads [18]: no band of TTF and weak influence of the bonding on the $\bf C_{60}$ spectrum were observed. In opposite, it was stated that the fullerene absorption bands undergo distinct blue shifts strongly dependent on the number of substituent groups but weakly dependent on their nature [18,19,22].

Vibrational Spectra

In order to analyze the experimental data of 1 and 2 dyads we recorded and calculated infrared absorption and Raman scattering spectra for the molecules 3, 8, and 9. The spectra of the investigated compound 1 with its reference compounds 3 and 8 are presented in Figure 2.

FIGURE 2 IR absorption (a) and Raman (b) spectra of the dyad **1** (PDI-TTF), PDI **3**, and the modified TTF **8**.

Most of the bands attributed to vibrations of 3 can be found in the spectra of the dyad 1 at the same or slightly shifted frequencies. For example, the strongest bands of 3 at 420, (512), 546, 584, 653, 686, (728), 748, 776, 806, 910, 1104, 1237, 1287, 1341, (1392), 1589, 1667, (1705), (2928), and (2957) cm⁻¹ (the wavenumbers of the bands which coincide with the bands of 8 are given in parentheses) have their counterpart in 1 at 422, 512, 546, 585, 652, 686, 728, 748, 775, 804, 908, 1107, 1238, 1289, 1341, 1391, 1589, 1668, 1706, 2923, and 2956 cm⁻¹ (for other coinciding bands see Table 1). The vibrational spectra of the dyad 2 with its reference molecules 3 and 9 are shown in Figure 3. Similarly, many bands attributed to vibrations of 3 can also be found in the spectra of the compound 2 at almost the same position. For example, the strongest bands of 3 at 420, 546, (584), 653, 748, 776, 806, 910, 1104, (1237), (1287), 1341, 1392, 1589, 1667, 1705, (2928), and (2957) cm⁻¹ (the wavenumbers of the bands which coincide with the bands of 9 are given in parentheses) have their counterpart in 2 at 419, 547, 582, 652, 747, 774, 804, 909, 1095, $1235, 1288, 1342, 1390, 1588, 1667, 1705, 2928, and <math>2953 \,\mathrm{cm}^{-1}$. The bands related only to 9 observed at 258, 272, 287, 430, 445, 486, 531, 551, 704, 841, 1020, 1060, 1178, 1266, 1428, 1463, and 1745 cm⁻¹ have their counterpart in 2 at 257, 269, 287, 429, 442, 484, 531, 551, 704, 841, 1020, 1062, 1176, 1266, 1431, 1462, and 1746 cm⁻¹ (for other coinciding bands see Table 2). Therefore, we propose the assignment of the vibrational bands for 1 and 2 dyads following the analysis of **3**, **8**, and **9** reference molecules.

The normal mode assignment for dyads have been proposed based on the comparison of calculated and experimental vibrational spectra; detailed computer output is available upon request. Because of the large number of normal modes (84 atoms and 246 modes for 1, and 134 atoms and 396 modes for 2), this assignment is based on comparison of simulated and experimental spectral peaks rather than on individual modes. Positions of well separated bands, multiplets and their shape were taken into consideration. Moreover, the description of the modes presented in the Tables 1 and 2 has been verified using standard Gauss View program base on the dynamic displacement visualization.

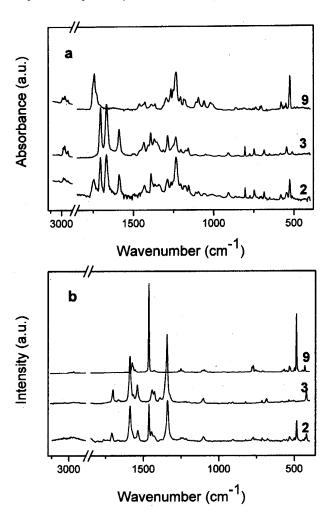
We started our detailed investigations of IR and Raman spectra of $\bf 3$, $\bf 8$, $\bf 9$ compounds from an analysis of possible conformations. For $\bf 3$ we have taken into account two different conformations: one adopts a boat conformation with two pentyl groups upward from the PDI plane (point group is C_s), the other a chair conformation where one pentyl group is upward, the other one is downward (point group is C_{2h}). For such conformers of $\bf 3$ with C_{2h} and C_s symmetry, the calculated frequencies of normal modes at B3LYP level of theory were

 $TABLE\ 1$ Normal Mode Analysis of 1 Based on the Experimental and Calculated Spectra of 3 and 8

-	Ex	perim	ent (cm	-1)	_	_	-		
	1	3			8	Calculation (cm^{-1})		Approximate	
IR	Raman	IR	Raman	IR	Raman	3^a	8^{b}	$\frac{Approximate}{description^c}$	
3096		3100		3096		3255	3227	C–H str., in 3 ; C–H str., in 8	
3057		3063	3060			3172		C-H str., pentyl groups in 3	
2956		2957		2954	2954	3115	3138	C-H str., pentyl groups in 3; C-H str., methyl groups in 8	
2923		2928	2931	2920	2919	3097	3050	C-H str., pentyl groups in 3; C-H str., methyl groups in 8	
2867		2869	2870			3037		C-H str., pentyl groups in 3	
2857		2856		2853		3026	3037	C-H str., pentyl groups in 3; C-H str., ethyl groups in 8	
1706	1707	1705	1702	1701	1700	1694	1753	C=O str., in 3 ; C=O str., in 8	
1668	1664	1667	1665			1655		C=O str., in 3	
1589	1588	1589	1589			1624		C=C str., C=O str., in 3	
1562	1561	1559	1567	1566	1565	1614	1610	C=C str., C=O str., in 3 ; C=C str., in 8	
1534	1535			1534	1534		1582	C=C str., in 8	
1492	1484	1496	1495	1497	1495	1548	1529	C-H bend., CC str., in 3; C=C str., in 8	
1433	1442	1435	1443	1427	1450	1484	1481	H-C-H bend., pentyl groups in 3; C-H bend., str., in 3; H-C-H bend., methyl groups in 8	
1391		1392	1390	1387		1441	1399	H-C-H wag., pentyl groups in 3; C-H bend., H-C-H bend., ethyl groups in 8	
1364				1360			1355	H-C-H bend., methyl groups in 8	
1341 1312	1339	1341 1314	1343	1318		1376 1315	1298	CC str., in 3 H-C-H wag., pentyl groups in 3; C-H bend., H-C-H tw., ethyl groups in 8;	

(Continued)

TABLE 1 Continued


	Ex	perim	ent (cm	⁻¹)					
1			3		8	Calculation (cm^{-1})		A	
IR Raman		IR	Raman	IR	Raman	3^a	8^{b}	$\begin{array}{c} {\bf Approximate} \\ {\bf description}^c \end{array}$	
1289		1287				1285		H-C-H tw., pentyl groups in 3; CC str., in 3	
1238		1237				1263		C-H bend., CC def., in §	
1156		1159	1160			1157		C-C def., pentyl groups in 3	
	1107		1104			1126		C-H bend., CC def., in §	
970		967		958		973	993	C-H bend., in 3 ; C-H def., methyl groups in 8	
908		910	908			911		C-C def., pentyl groups in 3	
867		869	867			876		CC def., in 3	
804		806	804			808		CC def., in 3	
775		776				780		CC def., in 3	
	767				767		764	C-S str., in 8	
748		748	744			752		CC def., in 3	
728		728	729	729	730	721	741	CC def., in 3; C-S str., in 8	
703	709			700	699		680	C-S str., in 8	
686		686	684			678		CC def., in 3	
668	669	671	671	668	657	652	677	CC def., in 3; C-S str., in 8	
652		653				624		C-C def., C=C def., in 3	
626		627				593		CC def., in 3	
617		615		618			552	C-S def., in 8	
585		584	585			569		CC def., in 3	
568		563				552		CC def., in 3	
546		546	548			529		CC def., in 3	
512		512		514			530	C-S def., in 8	
422	420	420	420			416		CC def., in 3	
406		406				363		CC def., in 3	

^aB3LYP/6-31G (unscaled).

obtained almost at the same position. Moreover, the total energy for the "boat" and "chair" conformation is also very similar: E(boat) = -3562,01855 hartrees and E(chair) = -3562.01873 hartrees. It can

 $[^]b$ B3LYP/6-311++G(d,p) (unscaled).

 $^{^{}c}$ Approximate mode description: str = stretching, bend = bending, def = deformation, tw = twisting, wag = wagging.

FIGURE 3 IR absorption (a) and Raman (b) spectra of the dyad **2** (PDI- C_{60}), PDI **3**, and the modified C_{60} **9**.

suggest that the conformation of pentyl groups does not strongly influence the spectrum. Presumably these groups do not interact with the core of the molecule **3** and hence do not significantly influence its optical activity. Middle part of **3** in optimized structure is not flat; the four chlorine atoms at the bay region are out of plane. In the case of compound **8** we have taken into account an arrangement of methyl groups. As a starting point in the optimization process, we considered many possible conformations of molecule **8**. We observed that the fully

TABLE 2 Normal Mode Analysis of **2** Based on the Experimental and Calculated Spectra of **3** and **9**

		ent (cm)						
	2		3	9		Calculation (cm^{-1})			
IR	Raman	IR	Raman	IR	Raman	C_{60}^{a}	3^b	9^c	$\begin{array}{c} {\rm Approximate} \\ {\rm description}^d \end{array}$
3098 3068		3100 3063	3060				3255 3172		C-H str., in 3 C-H str., pentyl
2953	2968	2957		2956	2956		3115	3138	groups in 3 C-H str., pentyl groups in 3; C-H bend., ethylene groups in 9
2928	2923	2928	2931	2922	2929		3097	3106	C-H str., pentyl groups in 3; H-C-H rck, ethylene
2866	2864	2869	2870				3037		groups in 9 C-H str., pentyl groups in 3
2854	2850	2856		2852	2860		3025	3071	C-H str., pentyl groups in 3; C-H rck, ethylene groups in 9
1746				1745				1733	linkage def., in 9
1706	1708	1705	1702				1694		C=O str., in 3
1667	1662	1667	1665				1655		C=O str., in 3
1588	1589	1589	1589				1624		C=C str., C=O str., in 3
	1537			1539			1570		CC str., in 3
1462	1463			1463	1464	1470		1494	C ₆₀ def., in 9
	1445	1435	1443				1484		H-C-H bend., pentyl groups in 3; C-H bend., CC str., in 3
1431 1390	1424 1389	1392	1390	1428	1427	1429	1441	1448	C ₆₀ def., in 9 H-C-H wag., pentyl groups in 3 ; C-H bend., in 3
1365				1366				1353	H-C-H tw., ethylene groups in 9
1342 1288	1340	1341 1287	1344	1296		1290	1376 1285	1307	CC str., in 3 H-C-H tw., pentyl groups in 3 ; CC str., in 3 ; C ₆₀ def., in 9
1266				1266		1260		1274	C ₆₀ def., in 9

TABLE 2 Continued

	E	xperim	ent (cm	-1)					
	2		3		9		lation (cm^{-1})	A
IR	Raman	IR	Raman	IR	Raman	C_{60}^{a}	3^b	9^c	$\begin{array}{c} {\sf Approximate} \\ {\sf description}^d \end{array}$
1253	1249			1252	1251	1251		1252	C ₆₀ def., linkage def., in 9
1235	1236	1237		1234	1238	1237	1263	1232	C-H bend., CC def., in 3; C ₆₀ def., in 9; linkage def., in 9
	1218		1218				1213		C-H bend., CC def., in 3
1205				1206		1205		1213	C ₆₀ def., linkage def., in 9
1186				1186		1182		1187	C ₆₀ def., linkage def., in 9
1176 1156		1159	1160	1178		1175	1157	1181	C ₆₀ def., in 9 C-C def., pentyl groups in 3
1111 1095	1102		1104	1110	1102	1115 1101	1126	1108 1092	C_{60} def., in 9 C-H bend., CC def., in 3 ; C_{60} def., linkage def., in 9
1062				1060		1061		1056	C ₆₀ def., linkage def., in 9
1020 963		967		1020		1020	973	1016	C ₆₀ def., linkage def., in 9 C-H bend., in 3
909	905	910	908	912	906	911	911	933	C-C def., pentyl groups in 3 ; C ₆₀ def., linkage def., in 9
865		869	867	865			876	873	CC def., in 3 ; linkage def., in 9
841 822	821	823	822	841			849	840	linkage def., in 9 CC def., in 3
804		806	804	806	808	796	808	795	CC def., in 3 ; C ₆₀ def., linkage def., in 9
774	771	776		771	771	775	780	781	CC def., in 3 ; C ₆₀ def., linkage def., in 9
755	754			756	755	753		755	C ₆₀ def., linkage def., in 9
747		748					752		CC def., in 3

(Continued)

TABLE 2 Continued

Experiment (cm ⁻¹)									
2		3		9		Calculation (cm^{-1})			A •
IR	Raman	IR	Raman	IR	Raman	C_{60}^{a}	3^b	9^c	$\begin{array}{c} \textbf{Approximate} \\ \textbf{description}^d \end{array}$
712	712			712	711	712		719	C ₆₀ def., in 9
704				704	704	709		705	C ₆₀ def., in 9
672	676	671	671	672	672	668	678	669	CC def., in 3;
									C ₆₀ def., in 9
652		653					624		C-C def.,
									C=C def., in 3
627		627					593		CC def., in 3
582		584	585	581	581	580	569	586	CC def., in 3;
									C_{60} def., in 9 ;
575				575	571	575		574	C ₆₀ def., in 9
563	567			563	565	567		564	C ₆₀ def., linkage
									def., in 9
558	551			557	551			554	C ₆₀ def., linkage
									def., in 9
547		546	548				529		CC def., in 3
527	531			527	531	526		534	C ₆₀ def., in 9
498	499			498	498	497		498	C ₆₀ def., linkage
									def., in 9
479	484			480	486	485		485	C ₆₀ def., in 9
	442				445			444	C ₆₀ def., linkage
									def., in 9
	429				430	433		431	C ₆₀ def., in 9
	419		420				416		CC def., in 3
	344				334			322	linkage def., in 9
	324		324				322		CC def., in 3
	287				287			280	linkage def., in 9
	269				272	273		276	C ₆₀ def., in 9
	257				258			261	C ₆₀ def., in 9
	227		222				217		CC def., in 3

^aIR and Raman data taken from [26].

optimized geometry of $\bf 8$ for DFT methods is slightly distorted from a plane to a boat conformation with methyl groups displaced from this plane to the same side. The normal modes calculation for $\bf 9$ was carried out with C_2 symmetry.

 $[^]b\mathrm{B3LYP}/6\text{-}32\mathrm{G}$ (unscaled).

 $[^]c\mathrm{B3LYP/3-21G}$ (unscaled).

 $[^]d$ Approximate mode description: str = stretching, bend = bending, def = deformation, tw = twisting, wag = wagging, rck = rocking.

The normal mode analysis for fully optimized 3, 8, and 9 molecules was performed using DFT(B3LYP) level of theory. Based on their normal modes dynamic visualization we could identify and describe bands (see Tables 1 and 2). For example, the IR bands related mostly to the vibrations of pentyl groups are observed for dyad 1 at 908, 1156, 1289, 1312, 1391, 1433, 2857, 2867, 2923, 2956, and 3057 cm⁻¹, whereas for dyad 2 at 909, 1156, 1288, 1390, 1445, 2854, 2866, 2928, 2953, and 3068 cm⁻¹. The vibrations which are due to the deformation of fullerene are observed at 269, 429, 479, 498, 527, 563, 575, 582, 672, 704, 712, 755, 774, 804, 909, 1020, 1062, 1095, 1111, 1176, 1186, 1205, 1235, 1253, 1266, 1288, 1431, and 1462 cm⁻¹. These frequencies related to C_{60} are almost unchanged comparing with pristine C_{60} : 273, 433, 485, 497, 526, 567, 575, 580, 668, 709, 712, 753, 775, 796, 911, 1020, 1061, 1101, 1115, 1175, 1182, 1205, 1237, 1251, 1260, 1290, 1429, and 1470 cm⁻¹ [26]. Base on our vibrational investigation we can conclude that the frequencies of the vibrations related to 3, **8**, **9** are only slightly changed upon formation of the dyads.

CONCLUSION

In this paper we report the spectral properties of the recently synthesized dyads PDI-TTF (1) and PDI- C_{60} (2), together with the analysis of electronic and vibrational features. According to our knowledge, for the first time PDI molecule has been associated in a dyad system with TTF as the donor counterpart. Based on the *ab initio* calculations, the normal modes analysis and interpretation of the vibrational spectra is presented. Moreover, the possible conformations of the component moieties of the dyads are discussed. The electronic and vibrational spectra of 2 suggest a small redistribution of charges on both fullerene and perylenediimide moieties. It was deduced from the small vibrational band shifts as well as the broadening and shifts of some C_{60} and PDI electronic bands after dyad formation. In opposite to 2, a charge redistribution on both part of the dyad 1 was almost undetectable by spectral methods.

REFERENCES

- [1] Zollinger, H. (2003). Color Chemistry, 3rd edition, VCH: Wheinheim.
- [2] Wuerthner, F. (2004). Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. *Chem. Commun.*, 1564.
- [3] Gust, D. & Moore, T. A. (1991). Photoinduced Electron Transfer, Springer: Berlin.
- [4] van der Boom, T., Hayes, R. T., Zhao, Y., Bushard, P. J., Weiss, E. A., & Wasielewski, M. R. (2002). Charge transport in photofunctional nanoparticles

- self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks. J. Am. Chem. Soc., 124, 9582.
- [5] Wescott, L. D. & Mattern, D. L. Donor-σ-acceptor molecules incorporating a nonadecyl-swallowtailed perylenediimide acceptor. J. Org. Chem., 68, 10058.
- [6] Li, Y., Wang, N., He, X., Wang, S., Liu, H., Li, Y., Li, X., Zhuang, J., & Zhu, D. (2005). Synthesis and characterization of ferrocene-perylenetetracarboxylic diimide-fullerene triad. *Tetrahedron*, 61, 1563.
- [7] Neuteboom, E. E., Meskers, S. C. J., van Hal, P. A., van Duren, J. K. J., Meijer, E. W., Janssen, R. A. J., Dupin, H., Pourtois, G., Cornil, J., Lazzaroni, R., Brédas, J. L., & Beljonne, D. (2003). Alternating oligo(p-phenylene vinylene)-perylene bisimide copolymers: Synthesis, photophysics, and photovoltaic properties of a new class of donor-acceptor materials. J. Am. Chem. Soc., 125, 8625.
- [8] Hua, J., Meng, F., Ding, F., Li, F., & Tian, H. (2004). Novel soluble and thermally-stable fullerene dyad containing perylene. J. Mater. Chem., 14, 1849.
- [9] Gómez, R., Segura, J. L., & Martín, N. (2005). Highly efficient light-harvesting organofullerenes. Org. Lett., 7, 717.
- [10] Baffreau, J., Perrin, L., Leroy-Lhez, S., & Hudhomme, P. (2005). Perylene-3, 4:9, 10-bis(dicarboximide) linked to [60]fullerene as a light-harvesting antenna. Tetrahedron Lett., 46, 4599.
- [11] Devic, T., Avarvari, N., & Batail, P. (2004). A series of redox active, tetrathiafulvalenebased amidopyridines and bipyridines ligands: Syntheses, crystal structures, a radical cation salt and group 10 transition-metal complexes. *Chem. Eur. J.*, 10, 3697.
- [12] Selected data for dyad 1: 1 H NMR (500 MHz, CDCl₃): 8.68 and 8.70 (2 s, 4H), 7.30 (s, 1H), 4.60 (m, 4H), 4.20 (t, 2H), 2.37 and 2.40 (2 s, 6H), 1.80 (m, 2H), 1.40 (m, 4H), 0.95 (t, 3H); 13 C NMR (125 MHz, CDCl₃): 162.3, 162.2, 159.0, 135.4, 135.3, 133.1, 133.0, 132.9, 132.8; 132.5, 131.4, 131.3, 128.9, 128.4, 127.8, 127.6, 127.5, 123.3, 123.2, 122.7, 112.7, 109.4, 63.0, 40.9, 39.3, 29.1, 27.7, 22.4, 19.2, 13.9; MS (MALDI-TOF): 964 (M $^+$).
- [13] Nierengarten, J. F., Gramlich, V., Cardullo, F., & Diederich, F. (1996). Regio- and diastereoselective bisfunctionalization of C₆₀ and enantioselective synthesis of a C₆₀ derivative with a chiral addition pattern. Angew. Chem. Int. Ed. Engl., 35, 2101.
- [15] Bingel, C. (1993). Chem. Ber., 126, 1957.
- [16] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr. J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P.,

- Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). *Gaussian 03*, Gaussian, Inc.: Pittsburgh, PA.
- [17] Leach, S., Vervloet, M., Desprès, A., Brèheret, E., Hare, J. P., Dennis, T. J., Kroto, H. W., Taylor, R., & Walton, D. R. M. (1992). Electronic spectra and transitions of the fullerene C₆₀. Chem. Phys., 160, 451.
- [18] Olejniczak, I., Graja, A., Bogucki, A., Golub, M., Hudhomme, P., Gorgues, A., Kreher, D., & Cariou, M. (2002). Vibrational and electronic properties of [60] fullerene-tetrathiafulvalenes (TTFs) cyclohexene fused polyads. Synth. Met., 126, 263.
- [19] Olejniczak, I., Graja, A., Bogucki, A., Hudhomme, P., Gorgues, A., Kreher, D., & Cariou, M. (2002). New bis-linked tetrarhiafulvalenes (TTFs) to [60] fullerene: Spectral investigations. Polish. J. Chem., 76, 95.
- [20] Olejniczak, I., Bogucki, A., Golub, M., Graja, A., Kreher, D., Cariou, M., Gorgues, A., & Hudhomme, P. (2002). Spectral studies of the bis-linked tetrathiafulvalenes (TTFs) to [60] fullerene. Full Nanotubes & Carb. Nanostructures, 10, 117.
- [21] Graja, A., Olejniczak, I., Bogucki, A., Bonifazi, D., & Diederich, F. (2004). Chromophoric interactions in [60]fullerene-porphyrin dyads investigated by solid-state UV-Vis and IR spectroscopies. Chem. Phys., 300, 227.
- [22] Łapiński, A., Graja, A., Olejniczak, I., Bogucki, A., & Imahori, H. (2004). Supramolecular porphyrin/fullerene interactions studiem by spectra methods. Chem. Phys., 305, 277.
- [23] Berlman, I. B., (1965). Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press: New York.
- [24] Icli, S., Demiç, S., Dindar, B., Doroshenko, A. O., & Timur, C. (2000). Photophysical and photochemical properties of a water-soluble perylene diimide derivative. J. Photochem. & Photobiol. A: Chem., 136, 15.
- [25] Langhals, H., Demmig, S., & Huber, H. (1988). Rotational barriers in perylene fluorescent dyes. Spectrochim. Acta., 44A, 1189.
- [26] Martin, M. C., Du, X., Kwon, J., & Mihaly, L. (1994). Observation and assignment of silent and higher-order vibrations in the infrared transmission of C₆₀ crystals. *Phys. Rev. B*, 50, 173.